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Abstract

Artificial intelligence is revolutionizing biomedicine due to groundbreaking advances in protein structure prediction, but
many diseases remain out of reach because the proteins involved are too dynamic for current tools. While models like
AlphaFold aim to predict a single, static 3D conformation, we introduce Topos-1, an all-atom generative model that
predicts realistic conformational ensembles for the roughly one-third of the human proteome that lacks a single well-defined
structure. Dynamic, flexible, and disordered proteins are at the root of many currently incurable neurodegenerative diseases
and aggressive forms of cancer, including Alzheimer’s, Parkinson’s, and prostate cancer. Topos-1 sets a new benchmark for
predicting conformational ensembles, outperforming AlphaFold, BioEmu, Chai, Boltz, and domain-specific models across
extensive experimental and computational evaluations. Our exhaustive evaluations include both large-scale global properties
as well as small-scale local properties that can be crucial for structure-based drug design. We also report progress using
Topos-1 to prospectively screen and design novel small molecule drug candidates, showing that computational predictions
are in excellent agreement with experimentally measured drug potencies for a fully disordered target. Topos-1 shows clear
power-law scaling and will improve even further with additional data, compute, and model size. By integrating Topos-1
into our AI-powered drug design platform, we accelerate traditional drug design approaches that rely on slow and expensive
computational and experimental tools. More importantly, Topos-1 also unlocks a capability to design new therapeutic
strategies that address so-called “undruggable” diseases.
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1. Introduction

Biomolecules are dynamic, but most experimental measurements only resolve the static elements of their structure [1, 2].
Proteins do not occupy a single state, but rather an ensemble of conformations that interconvert on timescales fast and
slow [2, 3]. The advances in machine learning-based structure prediction models over the last five years [4–7] have exploited
the extant experimental data [8] to predict the structures of largely static regions of biomolecules with an accuracy that
approaches experimental resolution. However, many proteins consist of, or contain sequences that have, a high degree of
intrinsic disorder, meaning that they do not adopt a single well-defined state and are not resolved in the most widely used
experimental characterization methods [9, 10]. As a result, models like AlphaFold often do not produce physically reasonable
predictions for these highly dynamic structural ensembles [11, 12]. Of course, we emphasize that the most widely used
structure prediction models are not designed to sample conformational ensembles and that intrinsically disordered proteins
(IDPs) constitute a negligible fraction of their training data [8, 13, 14]. Neglecting highly flexible regions of proteins is
untenable for many important therapeutic targets. Indeed, estimates suggest nearly a third of the human proteome adopts
no well-defined structure [15–17].

Figure 1 | Existing protein structure
prediction models excel for
structured proteins, which exhibit
limited conformational diversity
(top). Topos-1 predicts the complex
conformational ensembles of
disordered proteins, which represent
roughly a third of the human
proteome (bottom).

This class of highly flexible proteins is implicated in major neurodegenerative dis-
eases, including Alzheimer’s, Huntington’s, ALS, and Parkinson’s [18–21]. A variety
of aggressive cancers have also resisted therapeutic interventions, stymied by a lack
of insight into disordered domains [19, 22]. Even within structured proteins, dynamic
regions contribute to functional elements and are widely implicated in molecular
recognition [10]. For example, antibody complementarity-determining regions are
highly flexible and pose a challenge to the current paradigm of structure prediction
models [23]. Given the importance of flexible protein motifs in human diseases, new
tools are needed to better capture these conformational ensembles. Efficient and
accurate prediction of the conformational space of these flexible proteins would
enable the application of drug design approaches that cannot be used without
physically accurate structures [24, 25].

Here we introduce Topos-1, an all-atom, large-scale generative model that is
purpose-built to efficiently produce physically realistic conformations of intrinsically
disordered proteins. Topos-1 achieves state-of-the-art performance on experimen-
tal and computational benchmarks. Unlike models trained primarily on sequences
of structured proteins and data from the Protein Data Bank [8], we designed both
the architecture of our model and the training data generation pipeline to excel on
highly dynamic motifs. By scaling training to include proprietary physics-based sim-
ulations and experimental data of IDPs, we show that Topos-1 generates ensembles
that generalize to novel IDPs and obtains best-in-class accuracy on both global
and local structural properties. Additionally, Topos-1 shows power-law scaling with
model size and training data volume, demonstrating continued performance gains
as compute and data increase. Topos-1 not only outperforms state-of-the-art struc-
ture prediction models (which again, we emphasize are not designed for this task)
but also a variety of specialized IDP models.

In this report, we first demonstrate that Topos-1 produces conformations that set a
new standard when evaluated on experimental observables and molecular dynamics (MD) simulation data. This is the case
for both local and global properties, and Topos-1 is the top-performing all-atom model across all physical observables that we
measure. Moreover, Topos-1 succeeds in contexts where conventional structure prediction tools struggle, including showing
conformational sensitivity to perturbations in sequence. We show that ensembles generated by our model are a powerful
tool with which to computationally screen and design small molecule drug candidates. We design and synthesize novel,
undisclosed compounds that bind the intrinsically disordered androgen receptor N-terminal domain, a currently intractable
prostate cancer target. We show that our computational predictions are in excellent agreement with the measured potencies
that rival previous clinical candidates.

The improvement trajectory for Topos-1 is clear: the model demonstrates power-law scaling with data, compute, and
model size. By continuing to collect both computational and experimental data that shed light on flexible protein motifs,
we anticipate that Topos-1 will continue to set the standard for predicting the dynamical fluctuations of proteins. Model
inference can be parallelized over arbitrary numbers of GPUs, massively accelerating sampling in comparison to physics-based
methods such as molecular dynamics. Our best estimates suggest that Topos-1 generates conformational ensembles 1,000×



3

faster than atomistic molecular dynamics in explicit solvent. This acceleration unlocks a new paradigm for conformation-
aware molecular design.

In this Technical Report,

1. We introduce Topos-1, an all-atom generative model that produces physically realistic conformational ensembles for
intrinsically disordered proteins, outperforming AlphaFold-2, Boltz-2, Chai-1, BioEmu, and prior IDP-specific methods
on all experimental benchmarks.

2. We demonstrate that Topos-1 generates tens of thousands of all-atom conformations in minutes—orders of
magnitude faster than conventional molecular dynamics—and exhibits predictable improvements with increased
training data and model capacity.

3. We develop a physics-based data engine and training pipeline to build the largest IDP-focused all-atom simulation
corpus to date, which consists of both large-scale atomistic simulations and internal experimental measurements for
model improvement and validation.

4. We show that Topos-1 captures disease-relevant conformational states that are not captured by standard structure
prediction models, which we highlight with a study of 𝛼-synuclein, a key protein in Parkinson’s disease whose
misfolding and aggregation are central to pathology.

5. We demonstrate the practical downstream utility of Topos-1 for drug design in a case study on the androgen receptor,
a clinically validated driver of aggressive prostate cancer, wherein potencies predicted using conformational ensembles
generated by Topos-1 yield ligand rankings consistent with potencies measured experimentally in cell-based assays.

2. Results

2.1. Topos-1 outperforms AlphaFold-2, Boltz-2, Chai-1, and BioEmu on literature
experimental IDP benchmarks
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Figure 2 | Topos-1 outperforms leading protein structure prediction models on experimental benchmarks for
IDPs in both global, large-scale properties and local geometric features. (a) Mean absolute percent error in
radius of gyration (𝑅g). Topos-1 reduces the error in 𝑅g by 43–79% relative to baseline models. Experimental 𝑅g
values determined via SAXS. (b) Mean absolute error in NMR chemical shift predictions across 12 IDPs and 5 atom
types (carbonyl C, C𝛼, C𝛽, N, H). Topos-1 achieves 29–50% lower chemical shift prediction error than baseline
models. Error bars denote the standard error of the mean across proteins, computed from 𝑛 = 200 samples per
protein for each model.

Intrinsically disordered proteins do not adopt a single dominant structure but rather an ensemble of conformations. Con-
sequently, measuring the accuracy of a generated ensemble requires examining both global properties and local backbone
and side chain conformational statistics. To evaluate global conformational properties, for each model we computed the
ensemble-averaged radius of gyration 𝑅g, a metric reflective of the spatial extent and compaction of an ensemble, and
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compared it to experimental values determined with small-angle X-ray scattering (SAXS). To evaluate local conformational
properties, for each model we compared conformational changes quantified by chemical shifts from NMR experiments.

To ensure a robust evaluation, we curated a dataset of SAXS measurements of IDPs, following previous work [26–28]. We
restricted the analysis to IDPs with length ≤ 200 residues. All proteins in this evaluation set were excluded from Topos-1
training, along with any other sequences with 50% or more sequence similarity as measured with MMseqs2 linclust [29]
(see Supplementary Section B.2).

For each model, we constructed ensembles by generating multiple conformational samples per protein, which were subse-
quently aggregated to compute ensemble-averaged observables; we generated 200 samples per protein. We evaluated both
Boltz-2 and Boltz-2x, a variant that incorporates physics-based potentials. Boltz-2x outperformed Boltz-2 in both metrics,
so in Fig. 2 we report only the results from Boltz-2x. Throughout this Technical Report, we refer to AlphaFold-Multimer
v2.3 [30] as AlphaFold-2 (see Supplementary Section B.1.3 for further discussion).

For each protein, 𝑅g was computed for each generated conformation and averaged. Errors were computed per protein and
aggregated across proteins (see Fig. 2a and Supplementary Section B.1). Across 104 IDPs, Topos-1 reduces normalized
𝑅g error by approximately 43% relative to BioEmu, 60% relative to Chai-1, 71% relative to Boltz-2x, and 79% relative to
AlphaFold-2. These results indicate Topos-1 captures global ensemble properties of IDPs more accurately than these other
models.

We assessed local backbone agreement with experiment by comparing predicted chemical shifts against experimentally
derived NMR chemical shifts. We used a subset of IDPs for which high-quality NMR data was available. Chemical shifts
were computed as the ensemble-averaged mean absolute error across backbone atom types (see Fig. 2b and Supplementary
Section B.1). BioEmu does not predict side chain atoms and was therefore excluded from the chemical shift analysis.
Across these IDPs, Topos-1 achieves approximately 29% lower chemical shift prediction error than Boltz-2x, 46% lower
than AlphaFold-2, and 50% lower than Chai-1. We report further positive results comparing Topos-1 against additional
models trained on coarse-grained MD data in Supplementary Section B.1.

2.2. Topos-1 generates physically valid ensembles that are consistent with molecular
dynamics simulations

For many functionally important and disease-relevant proteins that lack a stable 3D structure, molecular dynamics (MD)
simulations provide crucial insights into the conformational ensemble. Here, we show that Topos-1 generates conformations
that closely match MD-derived ensembles while requiring orders of magnitude less computation. Whereas MD simulations
typically require days of GPU time, Topos-1 produces comparable ensembles in minutes. To quantify agreement with
MD, we evaluated ensemble-averaged global structural observables for 270 test IDPs (Fig. 3). The IDP ensembles were
generated using internal MD simulations. IDP sequences were selected from a diverse set of intrinsically disordered regions
(IDRs) in semi-ordered human proteins. Across all global metrics described in Supplementary Section B.3 (𝑅g, root-mean-
squared fluctuations (RMSF), and secondary-structure propensities), Topos-1 outperforms all baseline models, underscoring
the importance of architectures and training data explicitly designed to capture the statistics of intrinsically disordered
conformational ensembles.
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Global Ensemble Error (n = 270 proteins)
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Figure 3 | Topos-1 accurately reproduces global ensemble properties obtained from physics-based molecular
dynamics simulations. (a) Mean absolute percent error in radius of gyration (𝑅g). (b) Mean absolute error in
root-mean-squared fluctuations (RMSF). (c) Mean absolute error in 𝛼-helix propensity, measured as the
ensemble-averaged fraction of residues in helical conformations. (d) Mean absolute error in 𝛽-strand propensity,
measured as the ensemble-averaged fraction of residues in 𝛽-strand conformations. All metrics are computed relative
to molecular dynamics reference ensembles and averaged over 200 conformations per protein for 270 IDPs in the
Topos-1 test set. Error bars indicate the standard error of the mean across IDPs.

Beyond global statistics, accurate prediction of local structure is essential for describing how IDPs interact with themselves,
other biomolecules, and small-molecule ligands. To assess the ability of Topos-1 to reproduce MD-derived ensembles at
atomic resolution, we evaluated ensemble-averaged agreement for backbone dihedral angle distributions and side chain
rotamer populations (Fig. 4). These metrics are described in more detail in Supplementary Sections B.3.4 and B.3.5.
Models trained primarily on static protein structures—including AlphaFold-2, Boltz-2x, and Chai-1—exhibit poor agreement
with MD backbone ensembles, highlighting their limited capacity to capture local conformational heterogeneity. BioEmu,
which incorporates MD data during training, performs substantially better than structure-only baselines. Consistent with
the global-property analysis, Topos-1 achieves the lowest error across all local metrics, demonstrating its ability to capture
both backbone and side chain statistics in IDPs. Because BioEmu does not generate side chain coordinates, it was excluded
from the rotamer-based evaluation.
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Local Structural Error (n = 23,013 residues)
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Figure 4 | Topos-1 accurately captures local backbone and side chain conformational ensembles. (a) Circular
Wasserstein-1 distance (𝑊1) between backbone dihedral angle distributions of generated ensembles and molecular
dynamics references, computed for 𝜙 and 𝜓 angles and averaged across all residues from all proteins in the test set.
(b) Mean Jensen-Shannon divergence (JSD) between side chain rotamer-state distributions of generated ensembles
and MD references, averaged over all residues with defined 𝜒 angles from all proteins in the test set. Error bars
indicate the standard error of the mean. Rotamer-based comparisons are restricted to all-atom models that explicitly
generate side chain coordinates. Both calculations are described in greater detail in Supplementary Sections B.3.4
and B.3.5, respectively.

To further assess the agreement between ensembles generated with Topos-1 and MD simulation, we compared the collective
variables (CVs) obtained using a nonlinear dimensionality reduction method developed for protein conformational analysis,
ELViM [31] (Fig. 5). ELViM provides a useful framework for visualizing and comparing high-dimensional conformational
ensembles and has previously been applied to visualize and compare IDP ensembles [32, 33]. The resulting CVs encode
both local and global conformational features by embedding ensemble-wide pairwise similarities derived from backbone
C𝛼 coordinates or backbone dihedral angles. For each model, we estimated probability density functions in the ELViM CV
space using a kernel density estimation and quantified the agreement with MD reference ensembles via the Jensen-Shannon
divergence (JSD) (see Supplementary Section B.3.5). The JSD ranges from 0 to ln 2, where 0 indicates indistinguishable
distributions and ln 2 indicates no shared information. As shown in Fig. 5, Topos-1 achieves the lowest mean JSD relative
to MD across the test set, outperforming all other evaluated methods. In Fig. 5a, the CV distributions for six representative
IDPs are shown for combined embeddings and for each model separately. The leftmost column shows joint embeddings.
The second and third columns from the left show embeddings for the MD reference and Topos-1, where there is a strong
agreement between CV distributions. IDP 6 (row 6) serves as an example in which all models struggle to match the MD
reference. Figure 5 shows the JSD distributions for each model sorted by the mean JSD across the test set. Importantly, the
trends in the CV space are fully consistent with those observed in the global and local ensemble metrics (see Figs. 3 and 4).
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Figure 5 | Conformational landscapes generated by Topos-1 embed near molecular dynamics data in
unsupervised landscape analysis. (a) ELViM-based collective variable (CV) embeddings comparing conformational
ensembles generated by Topos-1 and baseline models against molecular dynamics (MD) reference ensembles for
representative intrinsically disordered proteins (IDPs). Embeddings are computed using a shared reference space
defined by the combined conformations from all models. Topos-1 exhibits the strongest overlap with MD-derived CV
distributions, whereas structure-based prediction models (AlphaFold-2, Boltz-2x, Chai-1) produce overly compact
ensembles and IDP-specific models show limited overlap despite greater dispersion. (b) Jensen-Shannon divergence
(JSD) between model-generated and MD-derived CV distributions across 270 IDPs in the test set. Histograms show
the distribution of JSD values, and the bar chart summarizes the mean JSD with the standard error of the mean for
each model. Topos-1 achieves the lowest divergence from MD, consistent with global and local ensemble metrics.
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2.3. Topos-1 performance improves with scale
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Figure 6 | Topos-1 shows power-law scaling, improving in
performance with both model size and training data,
demonstrating clear gains with increasing total compute.
We performed 12 independent training runs with models
spanning three sizes (136M, 182M, 319M parameters) and
four training set sizes. Increasing either model size or
training set size yields consistent reductions in test loss.

Beyond strong domain performance, a crucial requirement
of modern deep learning methods is scalability [34]. Empir-
ical evidence suggests that general approaches that scale
predictably and favorably with increasing compute tend to
outperform more tailored methods in the long run [35].
Recent work on scaling protein models [7, 36, 37] has shown
promising advances by training increasingly large models on
distillation data from existing structure prediction models.
Synthetic data have become necessary because high-quality
experimental protein structure data from sources like the
PDB [8] have been exhausted.

Training signal for Topos-1 comes from both synthetic and
experimental data, and we hypothesized that scaling com-
putationally derived ensembles would improve performance
consistent with scaling laws in other domains. To quantify
the scaling behavior of Topos-1, we compared 12 inde-
pendently trained models spanning 3 model sizes and 4
distinct scales of data. We constructed four datasets by
splitting our proprietary dataset by protein and subsampling
progressively larger subsets, reflecting different synthetic
data generation budgets. To ensure a consistent evalua-
tion protocol, all models were evaluated on the minimum
validation loss achieved after training on 4 A100 GPUs to
convergence.

As shown in Fig. 6, increases in synthetic data generation
compute and model size both lead to consistent and systematic reductions in validation loss. Importantly, there are no signs
of convergence or diminishing returns for the scaling of data generation. Together, these results indicate that synthetic
data generation compute is an effective lever for improving model performance, motivating further investment in large-scale
data generation using our proprietary physics-based simulation engine.

3. Evaluation of Topos-1 With Internal Experimental Data

To complement computational ensemble predictions, we generated and analyzed results collected using an internal collection
of IDPs. Our experiments probe structural features across multiple length scales to provide additional model evaluation data.
In this section, we present data obtained with SAXS and circular dichroism (CD), two methods we use to provide additional
ensemble-averaged observables to further inform Topos-1. SAXS measurements enable the evaluation of intramolecular
distance distributions in IDPs beyond what is captured by 𝑅g alone, and CD measurements quantify protein secondary
structure content comprised of 𝛼-helix, 𝛽-strand, and coil features. In addition to evaluating model performance, our
internal SAXS and CD experiments can be incorporated as supervision to train models whose ensemble statistics match
experimental observables, or used to guide ensemble generation at inference time.

3.1. Topos-1 ensembles are consistent with internally-generated SAXS data

In addition to the curated dataset of literature SAXS results analyzed in Section 2.1, we performed SAXS measurements on
an internal IDP library and compared the observed solution-phase structural properties with predictions from Topos-1 and
other models. These comparisons quantify overall agreement while also revealing specific structural regimes where models
deviate from experiment. Ensembles generated by Topos-1 for HOXB7, Katacalcin, PHF21A, and Exendin-4 are among the
most accurate across the various models evaluated (Fig. 7). In particular, the tails of the pair-distance distribution function
𝑃(𝑟) for Topos-1 decay at rates nearly identical to experiment, indicating that Topos-1 achieves the proper balance between
extended and collapsed conformers. In contrast, other models produce overly compacted or extended structures despite also
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providing reasonable mid-range agreement. Departures from experiment at different distance regimes were readily identified
by this analysis, even in cases where ensembles were indistinguishable based on the global 𝑅g metric alone. Since SAXS
is especially sensitive to these intramolecular distances, we leverage these measurements to develop more discriminative
performance benchmarks and guide the acquisition of supplemental training data aimed at further enhancing the model.
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Figure 7 | SAXS analysis of selected IDRs. For each protein, the left panel shows the experimental scattering
intensity I(q) versus the scattering vector q, overlaid with ensemble-averaged I(q) curves predicted by Topos-1,
AlphaFold-2, and BioEmu. For each protein, the right panel shows the pair-distance distribution function P(r) for
experimental data and each computational model. Values in parentheses in the legends denote the corresponding 𝑅g.
Topos-1 ensembles closely match experimental P(r) distributions across all distance regimes. The reported 𝑅g values
demonstrate that this single metric alone cannot distinguish between the accuracy of different models; the full P(r)
distribution reveals important differences in conformational ensemble accuracy. We refer the reader to Fig. S1 for an
expanded version of this figure.

3.2. Topos-1 ensembles are consistent with internally-generated circular dichroism data

Despite lacking a well-folded stable conformation, IDPs often exhibit varying degrees of secondary structure, defined as the
percent of 𝛼-helix, 𝛽-strand, and coil-like structures. Secondary structure content can be quantified using CD spectroscopy,
which we performed on our proprietary collection of IDPs (see Section A.4 for details). As illustrated in Fig. 8, ensembles
generated by Topos-1 are in reasonable agreement with CD spectra. Still, minor disagreements with experiment are present,
as is the case for Exendin-4, a peptide with higher helical content. These deviations from experiment provide informative
signals for improving future models.
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Figure 8 | Topos-1 ensembles are consistent with in-house circular dichroism data. Shown are four examples of
in-house collected circular dichroism (CD) datasets for different proteins with different qualitative properties,
illustrating strengths and possible areas of improvement. Topos-1 shows agreement with the spectra of the highly
disordered proteins SALL4C and ZC3H11C, on which existing structure prediction models produce secondary
structure inconsistent with measurement. On Exendin-4, a protein with moderate propensity for secondary structure,
Topos-1 performs competitively but shows less strong agreement than AlphaFold-2, which is designed for structured
proteins. AlphaFold-2 was omitted from SALL4C due to highly unphysical results. We refer the reader to Section A.4
for details on data collection and processing.

4. Designing Novel Drug-like Compounds with Topos-1

The successful application of Structure-Based Drug Discovery (SBDD) approaches to IDPs requires an efficient method to
characterize their conformational space. Despite developments in force fields and enhanced sampling techniques, obtaining
sufficiently distinct conformational minima of IDPs within a timeframe and computational cost that is compatible with
SBDD remains a significant challenge. To test the performance of Topos-1 against highly challenging targets outside of our
training data, we utilized Topos-1 to generate conformations of 𝛼-synuclein and the androgen receptor. For each target,
we show that Topos-1 provides ensembles useful for SBDD with orders-of-magnitude speedup relative to MD.

4.1. Case study: Topos-1 captures the behavior of the Parkinson's disease target 𝛼-synuclein

Figure 9 | 𝛼-synuclein is an intrinsically
disordered protein that is implicated in
Parkinson’s disease. A subset of the
numerous possible conformations of
𝛼-synuclein predicted by Topos-1 is shown
in blue and gray.

𝛼-synuclein is an intrinsically disordered protein that is a major therapeutic
target for Parkinson’s disease (PD) [38, 39]. In the 30 years since the link
between 𝛼-synuclein and PD was established, no FDA-approved drugs have
emerged for this target. We utilized Topos-1 to generate conformations of
𝛼-synuclein and compared our generated ensemble to those obtained with
BioEmu and AlphaFold-2. To compare to a reference ensemble, we used lit-
erature values that include experimentally determined secondary structure
propensities obtained via analysis of 2D NMR [40] as well as high-quality
reference MD data [33]. Figure 10 shows the ensemble-averaged mean and
per-residue mean absolute error of 𝛼-helical propensities in 𝛼-synuclein, rel-
ative to experimental data. Figures S6 and S7 show the calculated 𝛽-strand
and random coil propensities, respectively, and again demonstrate excellent
agreement between Topos-1 and MD simulation [33].

As can be seen in Fig. 10a, the mean absolute error of predicted 𝛼-helical
propensity by Topos-1 is very low, comparable to that of high-quality MD
simulations. BioEmu and AlphaFold-2 both have significantly larger prediction
errors. We note that the large error for AlphaFold-2 can be explained by
the presence of membrane-bound 𝛼-synuclein structures in the Protein Data
Bank, a significant source of training data for AlphaFold-2, which are not
representative of an isolated 𝛼-synuclein monomer in solution. Figure 10b
breaks down this error by residue, showing that while there are a few localized
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hot spots of over-prediction, all but one of these are present in the ensemble predicted by MD. Taken together, Topos-1
exhibits significantly better agreement with both MD and experiment than BioEmu and AlphaFold-2 in predicting the total
and per-residue secondary structure propensity of 𝛼-synuclein. This is critical for generating the correct ensemble of protein
structures.
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Figure 10 | Topos-1 generates conformational ensembles of Parkinson’s disease target 𝛼-synuclein that
outperform state-of-the-art structure prediction models in experimental fidelity. (a) Mean absolute error in
helical propensity relative to experiment averaged across the 𝛼-synuclein sequence (𝑛 = 140 residues). (b)
Residue-resolved mean absolute error in helical propensity reveals contiguous regions of excessive helical propensity.
Experimental measurements indicate near-zero helical propensity across the sequence [40].

Another important metric in evaluating the physical validity of a generated conformational ensemble is the backbone dihedral
angle distribution of the protein. Figure 11 shows the circular Wasserstein-1 distance (see Supplementary Section B.3.4)
from the reference backbone dihedral angle distribution obtained from MD simulation of 𝛼-synuclein. As can be seen
in Fig. 11, Topos-1 exhibits a significant improvement in prediction error compared to BioEmu and AlphaFold-2, with
residue-averaged distances of 0.037, 0.090, and 0.162, respectively.
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Figure 11 | Topos-1 produces conformational ensembles of 𝛼-synuclein in excellent agreement with 30 𝝁𝒔 of
molecular dynamics simulations conducted on the Anton supercomputer. The circular Wasserstein-1 distance
between the backbone dihedral angle distributions of generated samples and conformations from molecular dynamics
conducted in Ref. [33], shown per residue and averaged over 𝜙 and 𝜓 angles.

To further evaluate the validity of the generated conformational ensembles of 𝛼-synuclein, in Fig. 12 we compare the CV
distributions derived from ELViM embeddings for each model against reference MD simulations [33]. Both qualitative and
quantitative (via calculation of JSDs) analysis of the ELViM embeddings reveals excellent agreement between Topos-1 and
the reference MD data. An extended ELViM analysis with all models considered in this study is shown in Fig. S8. The
results in Figs. 10, 11, 12, and S8 demonstrate that Topos-1 captures both the diversity and the accuracy of conformational
states for a well-studied, disease-relevant IDP such as 𝛼-synuclein, a necessary step in the pursuit of SBDD. Moreover, it
achieves this in a matter of minutes, orders of magnitude faster compared to conventional methods.
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Figure 12 | Topos-1 conformational landscapes more accurately match those from molecular dynamics (MD)
simulations for 𝛼-synuclein. Samples from Topos-1, AlphaFold-2, Boltz-2x, and BioEmu were combined with 200
conformations from a publicly available MD simulation of the disordered protein 𝛼-synuclein [33] and the same analysis
was performed as in Fig. 5. Samples from Topos-1 more accurately reflect publicly available data for 𝛼-synuclein
compared to state-of-the-art structure prediction models and IDP-specific models. All figures have equivalent axes.

4.2. Case study: Topos-1 demonstrates sensitivity to sequence perturbations

Sequence variants are prevalent in IDPs, which, in addition to their implication in cancer and neurodegenerative diseases
discussed above, play a crucial role in viral proteins. However, most structure prediction pipelines only weakly differentiate
mutants [41]. To test whether Topos-1 can capture engineered changes in IDR conformational ensembles, we benchmarked
against a published protein engineering study that altered the charge pattern in two viral IDPs, measles virus NTAIL (127
aa) and Hendra virus PNT4 (107 aa), each in three variants (low-𝜅, WT, high-𝜅) where 𝜅 is a scalar measure of charge
patterning along the sequence. In these variants, the amino-acid composition was held constant while the linear ordering
of charged residues was permuted, isolating the effect of charge clustering from residue propensity [42].

For the sequence variants, the authors characterized the conformational response of the proteins to the permutations
using a combination of experimental techniques, including size-exclusion chromatography-SAXS, and reported a consistent
physical trend: increasing the charge clustering (higher 𝜅) compacted the chain, with 𝑅g and D𝑚𝑎𝑥 decreasing as 𝜅 increased.
Consistent with this observation, ensembles generated with Topos-1 reproduce the order in 𝑅g of low-𝜅 ≳ WT > high-𝜅 for
both NTAIL and PNT4, with the value of 𝑅g for high-𝜅 being noticeably more compact, matching the rank ordering and
relative magnitude observed experimentally (Fig. 13). This example highlights a practical use case for protein engineering:
Topos-1 responds to sequence-level charge patterning beyond amino-acid propensity, even in short (≈ 100 aa) IDPs.
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Figure 13 | Topos-1 correctly predicts the effects of charge-patterned mutations and reproduces
ensemble-level trends in agreement with experiment. Predicted radius of gyration (𝑅g) distributions for low-𝜅,
wild-type (WT), and high-𝜅 variants of the measles virus NTAIL peptide (left) and the Hendra virus PNT4 peptide
(right). Each distribution contains 6,000 samples from Topos-1. 𝜅 quantifies the sequence-wise arrangement of
oppositely charged residues along the sequence, ranging from well-mixed (low-𝜅) to charge-segregated (high-𝜅).
Topos-1 predicts the high-𝜅 variants to have a lower mean 𝑅g and the low-𝜅 variants to be similar to WT, consistent
with experimental observation [42]. Dashed vertical lines denote ensemble means.
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4.3. Case study: Topos-1 facilitates structure-based discovery of small molecules for the
prostate cancer target androgen receptor

Figure 14 | Representative poses of ligand interaction with the conformational space of the Tau5 R2R3
region predicted by Topos-1-AP. Protein backbone, side chains, and ligand are shown in dark blue, light blue, and
green, respectively.
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Figure 15 | Topos-1 conformational ensembles enable prediction
of high-potency binding of novel small molecules. Correlation
between the Topos-1-AP score and experimental potency from an
in-house cell-based assay on 27 proprietary Topos Bio compounds.
The dashed line shows the least‑squares fit. The model yields a
Pearson’s 𝑟 correlation coefficient of 0.73 with a two-sided 𝑝 value
of 1.3 × 10−5. Higher computational affinity scores indicate
stronger predicted binding, and higher pIC50 values indicate
greater experimental potency. Topos-1 generates conformational
ensembles that support downstream virtual screening, at a fraction
of the computational cost of long-timescale molecular dynamics
and without the need for significant ensemble post-processing.

The androgen receptor (AR) is a central driver
of prostate cancer, and its intrinsically disordered
N-terminal domain (NTD) participates in many ther-
apeutically relevant interactions, yet remains far more
challenging as a therapeutic target than the canoni-
cal ligand-binding domain or DNA-binding interface
[43]. Previous work examined ligand binding to the
Tau5 R2R3 region (residues 393 to 448) in human
AR NTD via long timescale MD simulations [44]. As
such, this system serves as a challenging and well-
developed use case to assess whether Topos-1 can
reduce the computational cost of ensemble genera-
tion, from tens of thousands of GPU hours to minutes
on a single GPU with reliable downstream utility.

Here we discuss results using Topos-1-AP, a propri-
etary ensemble-based affinity prediction (AP) tool
that works with ensembles generated with Topos-1.
We utilized Topos-1-AP for two ligand sets and the
Tau5 R2R3 region. Representative interaction poses
from one of the ligands and the Tau5 R2R3 region
are shown in Fig. 14. Details of the ligand sets and
the cell-based assay are provided in Supplementary
Section B.6. Ligand set L1 is comprised of 15 small
molecules with literature-reported IC50 values [45–
48]. Ligand set L2 is comprised of 27 small molecules,
including proprietary molecules with cell-based IC50
values measured. Affinity scores predicted by Topos-
1-AP were then used to assess linear correlation (by
Pearson’s 𝑟) and rank ordering (by Spearman’s 𝜌)
relative to experimental IC50 values.
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Compared to classical MD-based affinity prediction workflows [49], Topos-1-AP achieves substantial computational speedups
at three distinct stages. The first speedup comes from the rapid generation of representative conformational ensembles by
Topos-1. The second speedup comes from the high statistical accuracy of the ensemble generated with Topos-1 compared
to experimental measurements and MD data (see Section 2.2), avoiding the need for significant post-processing. This is
in contrast to MD, which often requires clustering and corrective reweighting based on experimental references. The final
speedup comes from the fact that samples from Topos-1 are globally and locally accurate (see Section 2.2). This global
structural coherence over the entire IDP sequence is crucial to obtaining accurate affinity prediction of small molecule
binding to IDPs, as information regarding binding site identity in IDPs is severely limited. Taken together, the preservation
of intra-conformer structure quality and inter-conformer distribution by Topos-1 at ultra-low computational cost plays a
central role in the performance of Topos-1-AP.

As shown in Fig. 15, without prior information about the ligand binding sites we observe medium-to-strong linear correlation
and ranking power by Topos-1-AP in both ligand sets (see Section B.6.2). Furthermore, fivefold-replicated predictions
with Topos-1-AP using different random seeds yielded consistent ligand rankings. Note that even a single run can reach
satisfactory agreement with experiment (Pearson’s 𝑟 = 0.58, Spearman’s 𝜌 = 0.64). As such, these results establish
Topos-1 as a computationally efficient and scalable alternative to MD-based ensemble generation for IDP-ligand affinity
prediction. The resulting pipeline achieves orders-of-magnitude reductions in computational cost while maintaining reliable
downstream performance in affinity prediction and virtual screening applications.

5. Conclusion

We introduced Topos-1, a structure prediction model that achieves state-of-the-art performance on intrinsically disordered
proteins by designing a new generative model architecture with specific competencies for flexible proteins. While the model
unambiguously performed the best on an exhaustive set of experimental and computational evaluations, we again note that
AI structure prediction models like AlphaFold were trained primarily using experimental structures that fail to resolve the
regions on which we focus. Nevertheless, we assert that focusing on these regions is important for both providing insight
into the biology of and designing new drugs for intrinsically disordered proteins. In fact, we showed that novel compounds
can be designed de novo using Topos-1 as a guide for high potency due to its highly physical and rapidly enumerated
conformational ensembles.

Topos-1 currently focuses on accuracy for single-molecule properties of intrinsically disordered proteins, but many disordered
sequences are co-expressed with structured regions. Building on the success of AlphaFold, as many others have, we plan
to expand Topos-1 to accurately capture interactions between order and disorder. The biological function of disordered
proteins is often driven by interactions that are modulated by post-translational modifications, and we continue to expand
Topos-1 to better capture the often-dramatic effects of phenomena like phosphorylation and methylation [50]. In addition,
cellular context, notably membrane interaction, plays a significant role in IDP structure, and we are expanding Topos-1 to
differentiate these contexts.

Enabling the design of small molecule therapeutics is a major goal of Topos Bio, and while we show promising data for
novel compounds, expanding the capabilities of our generative model to include co-folding would provide a significant
acceleration to our platform. We anticipate that this can be achieved with additional scale of both experimental and
synthetic data generation; indeed, our experiments have already shown dramatic model improvements with a growing
dataset. This expanded biomolecular corpus will include small molecules, proteins, and nucleic acids, which are often highly
flexible. Furthermore, we have found that test-time compute can enhance our model even further and expect scaling at
inference time to become a major aspect of future versions of Topos-1.
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A. Materials and Methods

To rigorously benchmark Topos-1 against both experimental observables and physics-based simulations, we developed an
integrated biophysical pipeline combining SEC-purified peptide preparation with SAXS, CD, and dynamic light scattering
(DLS) characterization under a unified buffer regime. This approach enables repeatable, high-confidence measurements
of intrinsically disordered protein ensembles at scale and provides a unique training and validation resource for model
development.

A.1. Peptides

A panel of peptide sequences ranging from 21–100 amino acids was selected based on low pLDDT scores from AlphaFold-
2, together with additional sequence-derived metrics including hydrophobic residue content and distribution, net charge,
charge patterning, predicted solubility, and isoelectric point. Peptides were obtained either as commercially available from
Cayman Chemical or were custom synthesized by Lifetein. Custom peptides were delivered at >95% purity, contained an
N-terminal biotin–PEG4 moiety to enhance solubility and support downstream assays, and were C-terminally blocked with
an alcohol. All peptides were supplied lyophilized and reconstituted to initial stock concentrations of 20–40 mg mL−1. All
measurements were performed in a common buffer: 20 mM sodium phosphate, pH 7.4, 100 mM sodium fluoride. Sodium
fluoride was used in place of chloride to avoid strong far-UV absorbance interference during CD spectroscopy. No DMSO or
other organic solvents were used. Prior to further processing, samples were passed through 0.1 𝜇m spin filters and purified
by size-exclusion chromatography on an ÄKTA Avant FPLC equipped with a Cytiva Superdex 30 10/300 GL column. The
flow rate was 1 mL min−1. Absorbance was monitored at 205, 214, and 280 nm, enabling quantification of peptides lacking
aromatic residues. 250 𝜇L of sample was injected, and 0.3 mL fractions were collected in 96-well polypropylene plates. This
workflow removed aggregates and provided complete buffer exchange into the working buffer. Conductivity measurements
confirmed quantitative removal of residual trifluoroacetic acid from synthesis. Peptide loading concentrations were selected
such that SEC peak fractions contained sufficient material for all downstream experiments without additional handling,
ensuring consistent provenance across assays.

A.2. Dynamic light scattering (DLS)

Dynamic light scattering measurements were performed using a Wyatt DynaPro Plate Reader II in 384-well format. Samples
were prepared directly from SEC peak fractions, and the SEC running buffer served as a no-scattering reference. Each well
contained 50 𝜇L of sample and was measured immediately to prevent evaporation artifacts. Measurements were collected
at 20 °C, using 10 acquisitions per well with a 5-second acquisition time at the instrument’s 830 nm laser and 173°
backscatter detection geometry. Hydrodynamic radius (𝑅h), sample homogeneity, and polydispersity were determined using
Wyatt Dynamics Software via cumulant analysis of the autocorrelation function. Where relevant, 𝑅h values were compared
to SAXS-derived 𝑅g values to check for oligomeric states.

A.3. Small-Angle X-Ray Scattering (SAXS)

A.3.1. Data Collection

Synchrotron SAXS data were collected at Beamline 4-2 at the Stanford Synchrotron Radiation Lightsource (SSRL; Menlo
Park, CA, USA) under proposals S-XV-RAS-12E0 and S-XV-RAS-12F0A. BL4-2 is part of the SSRL Structural Molecular
Biology Program and is supported by the DOE Office of Biological and Environmental Research and the National Institutes
of Health, National Institute of General Medical Sciences. Data were collected on a Pilatus3 X 1M detector positioned 1.2 m
from the sample at an X-ray wavelength of 𝜆 = 1.127 Å. Scattering intensity was recorded as I(q) vs q, where 𝑞 = (4𝜋/𝜆) sin 𝜃
where 2𝜃 is the scattering angle. For each peptide, two buffer blanks were collected. SAXS samples were taken directly
from SEC-purified peak fractions, and three two-fold dilutions were prepared to assess potential self-association. 30 𝜇L
samples were arrayed in 96-well PCR plates and loaded using the BL4-2 autosampler. For each condition, sixteen 1-
second exposures were collected. Data were normalized to transmitted-beam intensity, radially averaged, and solvent-blank
scattering was subtracted to generate final profiles. Frames were inspected for radiation damage, and exposures showing
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systematic intensity decay or low-q deviation were excluded. Guinier analysis ensured that: 𝑞 ∗ 𝑅g < 1.3 and confirmed the
absence of aggregation or interparticle interference.

A.3.2. Data Processing and Analysis

Primary SAXS data processing was performed using BioXTAS RAW 2.3.0 [51] and the ATSAS 3.2.1 software suite [52].
Pair-distance distribution functions P(r) were computed using bIFT [53]. The theoretical SAXS I(q) curve for each member
of predicted ensembles was computed using CRYSOL taking into account appropriate hydration models, contrast, excluded
volume, and the presence (or absence) of model hydrogens. The ensemble I(q) was calculated by averaging the samples in
reciprocal space. A 5% sigma-floor noise model was applied prior to P(r) calculations.

A.3.3. Experimental Investigations

Comparison of the experimental data with predictions was performed using the same ensemble sets generated for the
comparisons in Section 3.1. Comparison statistics of model performance versus the data were carried out in both reciprocal
and real space. This analysis was carried out with ensembles generated by Topos-1, AlphaFold-2 [4], BioEmu [54], Boltz-
2x [7], Chai-1 [6], IDPFold [55], and IDPForge [27]

The data shown were obtained from four intrinsically disordered peptides (Table S1). The first is the N-terminal transacti-
vation domain of the homeodomain transcription factor HOXB7, a prognostic marker indicating poor clinical outcomes due
to its role in driving aggressive cancers by stimulating oncogenic pathways such as MAPK, PI3K-Akt, and EGFR. The other
proteins include Katacalcin, a 21-amino acid peptide hormone derived from the C-terminal cleavage of procalcitonin in thy-
roid C-cells; the C-terminal IDR region of PHF21A, an epigenetic repressor of gene expression during brain development;
Exendin-4, a 39-amino acid glucagon-like peptide-1 (GLP-1) receptor agonist originally isolated from Gila monster (Helo-
derma suspectum) venom; BAG6, a co-chaperone involved in protein synthesis and folding, ZC3H11C, a protein predicted
to be involved in the nuclear export of mRNA; SALL4C, a transcription factor with a role in embryonic development.

Table S1 | Subset of our internal dataset of intrinsically disordered proteins used in the SAXS and CD
measurements performed and reported in Figs. 7 and 8, respectively.

Peptide Residues pLDDT Sequence
HOXB7 TAD 18 57 NTLFSKYPASSSVFATGA
Katacalcin 21 43 DMSSDLERDHRPHVSMPQNAN
PHF21A C-terminal IDR 58 42 GIDLSKPVDSEATVGAISNGPDCTPPANAATSTPAPSPSSQSCTANCNQGEETK
Exendin-4 39 74 GEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS
BAG6 63 46 MGQAGSTISNSHAQPFDFPDDNQNSKKLAAGHELQPLAIVDQRPSSRASSRASSRPRPDDLEI
ZC3H11C 73 52 SEEQGEGSSGVSSLLLHPEPVPGPEKENVRTVVRTVTLSTKQGEEPLVRLGLTETLGKRKFSTGGDSDPPLKR
SALL4C 45 70 ANNNSARRGRKLAIENTMALLGTDGKRVSEIFPKEILAPSVNVDP

A.4. Circular dichroism (CD) spectroscopy

Far-UV CD spectra were collected using a JASCO J-1500 CD spectrometer equipped with temperature control and operated
at 20 °C. Measurements were performed in 0.1 cm path-length quartz cuvettes. Peptides in 20 mM sodium phosphate, 100
mM NaF, pH 7.4 were used directly from peak SEC fractions as in the SAXS and DLS experiments. Sample concentrations
were determined directly on the CD instrument from 𝐴205 and 𝐴214 absorbance measurements and were used to convert
CD intensities from millidegrees to mean residue molar ellipticity. Spectra were collected from 180–300 nm at 0.1 nm step
size. Four sequential scans were recorded and averaged per sample. Matched-buffer spectra were collected and subtracted
using JASCO Spectra Manager / SpectraMax software. High-tension voltage and absorbance channels were monitored to
confirm spectral quality.
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Figure S1 | Extended SAXS analysis of selected IDRs. Expanded version of Fig. 7 including additional model
comparisons. Experimental I(q) data (left panels; black points) are overlaid with the ensemble-averaged I(q)
predicted by calculating the scattering curve for each ensemble member and then averaging the curves. The P(r)
curves derived from experiment and all 7 models tested in this report are presented on the right. For ease of
comparison the experimental data are superimposed on each plot. The experimental or calculated 𝑅g value is
indicated by the vertical dashed line, with the corresponding 𝑅g value reported in the top-right corner of each panel.
The proteins used are HOXB7 (a), Katacalcin (b), PHF21A (c), and Exendin-4 (d).
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A.4.1. Computation of CD spectra from predicted ensembles

In order to compare the predicted ensembles from different structure prediction models directly to the observed CD spectra,
we use SESCA [56] with the DS-B4R1 basis set to forward-compute the spectra from the predicted structural ensembles.

SESCA computes the CD signal of a structural ensemble by linearly combining a set of basis-functions 𝐵𝑖 (𝜆) corresponding
to different secondary structure motifs based on their relative occupancy 𝑓𝑖:

𝜃pred (𝜆) =
𝑀∑
𝑖=1

𝑓𝑖 𝐵𝑖 (𝜆)

We perform intensity rescaling [56, 57] by applying a scalar correction to every computed spectrum to minimize the RMSD
to the experimental spectrum before plotting:

𝑠∗ =

∑
𝜆 𝜃exp (𝜆) 𝜃pred (𝜆)∑

𝜆 𝜃pred (𝜆)2 , 𝜃fit (𝜆) = 𝑠∗𝜃pred (𝜆).

A.4.2. Conversion of CD signal to mean residue molar ellipticity

Raw CD signals were recorded in millidegrees (mdeg) and converted to ellipticity (𝜃) in degrees. Mean residue molar
ellipticity [𝜃]MRE was calculated as:

[𝜃]MRE =
𝜃 × 100
𝑐 × ℓ × 𝑁

.

where 𝜃 is the measured ellipticity in degrees, 𝑐 is the molar peptide concentration in M, ℓ is the optical path length in cm,
and 𝑁 is the number of residues [58]. The result is in deg M−1 m−1, which is equivalent to the commonly used units of deg
cm2 dmol−1. This normalization enables direct comparison of spectra across peptides of different sizes or under different
conditions such as path length or concentration.

B. Supplementary Information

B.1. Additional benchmarking analyses

B.1.1. Comparison to coarse-grained IDP models

In Section B.1 we focus on comparisons to well-known, atomistic structure prediction models. Recently, several ensemble
prediction methods trained on coarse-grained MD simulations such as CALVADOS [59] have emerged. Here, we compare
Topos-1 to IDPFold and IDPForge, two recent models that utilize CALVADOS trajectories as part of their training data. We
note that the results presented in Section B.1 are based on unrelaxed and unminimized model outputs, which was done to
quantify the agreement of raw model outputs with experiment. In contrast, IDPForge by default post-processes its outputs
with MD relaxation. To provide a fair comparison, we also minimized Topos-1 outputs as described in Section B.1.3. IDPFold
does not predict side chains, so it was excluded from the NMR shift benchmark. CALVADOS is trained to show excellent
agreement with global experimental measurements such as 𝑅g while only approximately capturing local properties by using
an effective coarse-grained potential [60]. Topos-1 outperforms both IDPFold and IDPForge when evaluated against both
experimentally measured local and global ensemble properties and our simulation-based evaluation suite.
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Figure S2 | Topos-1 outperforms models trained on coarse-grained MD simulations. (a) Mean absolute percent
error in radius of gyration (𝑅g). Experimental 𝑅g values determined via SAXS. (b) Mean absolute error in NMR
chemical shift predictions across 12 IDPs and 5 atom types (carbonyl C, C𝛼, C𝛽, N, H). Error bars denote the
standard error of the mean across proteins, computed from 𝑛 = 200 samples per protein for each model.
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Figure S4 | Comparison between Topos-1 and models trained on coarse-grained MD data on local backbone
and side chain conformational ensembles metrics. For details, we refer the reader to Sections 2.2 and
Supplementary Sections B.3.4 and B.3.5. Because IDPFold does not generate side chain coordinates, it was excluded
from the rotamer-based evaluation.
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Global Ensemble Error (n = 270 proteins)
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Figure S3 | Comparison between Topos-1 and models trained on coarse-grained MD data on global ensemble
properties obtained from physics-based molecular dynamics simulations. For details, we refer the reader to
Section 2.2.
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B.1.2. Benchmark dataset construction

To assess performance, several high-quality experimentally measured data sources largely focused on disordered proteins
were curated.

This included a 104 protein SAXS-derived 𝑅g dataset reported by Novak et al. [28] and made available via GitHub
repository1. The original 133 protein set was filtered to include only those sequences containing ≤ 200 residues, and for
each protein the average measured 𝑅g was used as a reference.

A separate 12 protein dataset containing both NMR-derived chemical shift information and SAXS-derived 𝑅g values was
constructed from Zhang et al. [27] and Robustelli et al. [26]. Though Zhang reports experimental 𝑅g results on 28 proteins,
only 14 of these have experimentally measured chemical shifts, and we discarded 2 of those because they contained only
a subset of atom types (His5 was hydrogen only, and rs1 was carbon and C𝛼 only) to arrive at our final 12 protein set.

Lastly, a 270 protein sequence test dataset that was omitted from Topos-1 model development was constructed, which con-
tained a significant corpus of proprietary MD simulation data. To prevent potential data leakage when splitting this dataset,
we utilized MMSeqs2 linclust-based sequence similarity clustering with a 50% identity threshold [29]. See Section B.2 for
further details.

B.1.3. Model inference and ensemble generation

For comparative purposes, the peptide structure prediction models AlphaFold-2 [4], BioEmu [54], Boltz-2x [7], Chai-1 [6],
IDPFold [55], and IDPForge [27] were all considered in addition to our Topos-1 model. We note that STARLING [28]
was omitted from final consideration, as we are interested in drug discovery applications, a task for which coarse-grained
structure prediction models are ill-equipped. Each model was given an input peptide sequence (either in FASTA format or
as a pre-computed multi-sequence alignment generated via MMSeqs2 [29] from Uniref100 clusters [61]) and configured
to generate 200 conformational samples from that sequence. Models were executed with out-of-the-box default parameter
settings, except as further specified below.

AlphaFold-2 was selected over AlphaFold-3 [5] because license restrictions prevent us (as a commercial entity) from using
it in evaluations. Since AlphaFold-2 was designed to generate a single confident structure per model output and cannot be
configured to generate diverse samples without introducing architectural changes such as MSA subsampling [62] or dropout
layers [63], we use AlphaFold-Multimer [30], an extension of AlphaFold-2, as it supports generating multiple samples per
model by running the model multiple times with different random seeds.

BioEmu samples were generated using the bioemu-v1.1 model.

To produce the reported Boltz-2x outputs, the configuration flag --use-potentials was added to introduce physics-
based steering into the generated outputs. Results using Boltz-2 without steering were also generated, but not reported as
Boltz-2x performed better in our evaluations.

In addition to the raw, unbiased outputs produced by each model, further post-processing stages were optionally performed
depending on the model and specific test to ensure a more equitable basis for comparison. This included adding missing
C-terminal oxygen atoms, adding missing hydrogen atoms, running energy minimization with particular atom restraints
(none, C𝛼 only, all heavy atoms, all atoms), and running MD relaxation without atom restraints. Langevin dynamics and
1000 steps of 2 fs simulation operating at 300 K were used.

B.1.4. Radius of gyration (𝑅g) computation

Radius of gyration (𝑅g) is a global metric that quantifies the spatial extent of the conformational ensemble. 𝑅g is computed
for each conformation in an ensemble using the C𝛼 coordinates. For a conformation with 𝑁 C𝛼 atoms at positions {r𝑖}𝑁𝑖=1
and center of mass rcm, the radius of gyration is defined as

𝑅g =

√√√
1
𝑁

𝑁∑
𝑖=1

∥r𝑖 − rcm∥2.

1github.com/holehouse-lab/supportingdata/tree/master/2026/starling_2026/analysis/experimental_comparison/saxs_rg

https://github.com/holehouse-lab/supportingdata/tree/master/2026/starling_2026/analysis/experimental_comparison/saxs_rg
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B.1.5. NMR chemical shift evaluation

Nuclear magnetic resonance (NMR) chemical shifts capture the variation in the electron distribution for a given type of
nucleus and can be used as a measure of local molecular geometric differences. To quantify the error in chemical shifts
relative to experimentally measured references, we ran the conformational samples of each model through the SPARTA+
chemical shift prediction software Version 2.9 Rev 2017.143.12.12 [64]. SPARTA+ predicts, for each residue, the value
of the chemical shift for each backbone atom type (C𝛼, C, N, H) as well as side chain atom type C𝛽.

Chemical shift errors were calculated per-residue and per-atom type by taking the predicted outputs and comparing them
with experimental reference values. Residue level alignment was performed in instances where the sequences differed and
the raw error deltas per residue and atom type were first averaged across samples to get ensemble average errors. These
ensemble-averaged errors were then aggregated to provide overall errors per atom type by taking the mean absolute error
across residues and then further aggregating these across proteins by again taking the mean of the absolute errors. This is
reported in Fig. S5. Finally these errors per atom type were aggregated to get a single protein level mean absolute error
for each model, which is reported in Fig. 2.

Since the side chain atom type C𝛽 is included in the references and predicted outputs, models that did not include side chain
atoms were excluded from comparison. This eliminated the backbone-only BioEmu and IDPFold models from consideration.

SPARTA+ was selected over other chemical shift prediction packages like UCBShift2 [65] primarily based on its inference
speed and integration into popular MD analysis software such as MDTraj [66].

B.1.6. Additional supplementary figures

A breakdown per atom type of the mean absolute errors in chemical shifts from Fig. 2 is reported in Fig. S5.
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Figure S5 | Extended results for Fig. 2. Topos-1 outperforms leading protein structure prediction models on NMR
experimental chemical shifts across atom types. Sample sizes vary per atom type due to limited experimental NMR
data. Error bars denote standard error of the mean across proteins. (a) Mean absolute error in PPM for C𝛼 atom
predictions across 12 IDPs (b) Mean absolute error in PPM for C𝛽 atom predictions across 12 IDPs (c) Mean
absolute error in PPM for C (carbonyl) atom predictions across 10 IDPs (d) Mean absolute error in PPM for N atom
predictions across 10 IDPs (e) Mean absolute error in PPM for H atom predictions across 12 IDPs.
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B.2. Data leakage prevention

To prevent data leakage, we first clustered all sequences using MMSeqs2 linclust at a 50% sequence identity threshold [29].
We then performed embedding-based clustering using FAISS with a cosine similarity threshold of 0.995 on mean residue-level
embeddings from our protein language model.

All sequences assigned to the same sequence- or embedding-based cluster were placed in the same dataset split. None of
the proteins evaluated in this study, nor any proteins with high sequence or embedding similarity to them, appear in the
Topos-1 training set. This includes all proteins that appear anywhere in the paper’s results, including benchmark metrics,
model comparisons, and case studies.

B.3. Structural metrics and distance definitions and calculations

B.3.1. Normalized radius of gyration error

For each protein, we calculate the ensemble-averaged 𝑅g as the arithmetic mean across all conformations. The normalized
𝑅g error is defined by

error𝑅g =

��𝑅model
g − 𝑅ref

g
��

𝑅ref
g

,

where 𝑅ref
g denotes the ensemble-averaged radius of gyration from the reference (MD) ensemble. For each baseline model,

we report the mean normalized 𝑅g error across all proteins, expressed as a percentage. 𝑅g is calculated as described in
Supplementary Section B.1.4.

B.3.2. RMSF error

Root-mean-square fluctuation (RMSF) quantifies the positional variability of each residue across the structures in an
ensemble and is a standard measure of local flexibility.

RMSF is computed using only the C𝛼 coordinates. Prior to calculating RMSF, we align all structures in an ensemble to
a common reference frame using Biopython’s SVDSuperImposer [67], which performs an optimal rigid-body superposition
via singular value decomposition (Kabsch algorithm [68]). The reference frame is defined as the ensemble-mean structure,
which is the element-wise average of the coordinates across all 𝑁 conformations. After alignment, the RMSF is computed as

RMSF(𝑖) =

√√√
1
𝑁

𝑁∑
𝑗=1




r( 𝑗 )𝑖 − r̄𝑖



2
,

where r( 𝑗 )𝑖 denotes the aligned 3D position of residue 𝑖 in conformation 𝑗 , and r̄𝑖 represents the mean position of the residue
𝑖 across the ensemble, calculated as

r̄𝑖 =
1
𝑁

𝑁∑
𝑗=1

r( 𝑗 )𝑖 ,

and ∥·∥ denotes the Euclidean norm.

For each protein ensemble, the mean RMSF is computed as the arithmetic mean across all 𝐿 residues:

RMSF =
1
𝐿

∑
𝑖

RMSF(𝑖).
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For each protein 𝑝, we compute the ensemble-level mean RMSF for both the model-generated ensemble RMSF
(𝑝)
model and

the corresponding reference ensemble RMSF
(𝑝)
ref . The RMSF error for protein 𝑝 is defined as

errorp = RMSF
(𝑝)
model − RMSF

(𝑝)
ref .

Across a set of 𝑃 proteins, we determine the overall RMSF error of the model using the mean absolute error (MAE):

MAE =
1
P

∑
P

|errorp |.

B.3.3. 𝛼-helix and 𝛽-strand propensity errors

Secondary structure propensity is calculated using the C𝛼 coordinates. We use Biotite’s annotate_sse function [69] to
assign secondary structure elements (SSEs) as 𝛼-helix or 𝛽-strand on a per-residue, per-conformation basis. Per-residue
propensity is defined as the fraction of conformations across an ensemble in which a residue adopts the corresponding SSE
type. The mean propensity for a protein is calculated as the average of per-residue propensities across the sequence.

We calculate a model’s secondary structure propensity error as the mean absolute error (MAE) across per-protein differences
in mean secondary structure propensity between model-generated ensembles and corresponding reference ensembles derived
from molecular dynamics (MD). We treat 𝛼-helix and 𝛽-strand propensities separately.

B.3.4. Backbone dihedral distance

The backbone dihedral distance was calculated by comparing the 𝜙 and 𝜓 angle distributions between the generated
ensembles and the MD ensembles. For each residue of each protein in the test set, we determined both 𝜙 and 𝜓 using
built-in MDTraj methods [66].

We mapped the dihedral angles to the circle 𝑆1 � [0, 1), and compared the resulting empirical measures using the circular
1-Wasserstein (𝑊1) distance as implemented by ot.wasserstein_circle in POT [70]. For two probability measures 𝑢
and 𝑣 on [0, 1) with cumulative distribution functions

𝐹𝑢 (𝑡) = 𝑢([0, 𝑡]), 𝐹𝑣 (𝑡) = 𝑣([0, 𝑡]), 𝑡 ∈ [0, 1),

the circular 𝑊1 distance can be written as [71]

𝑊1 (𝑢, 𝑣) =
∫ 1

0
|𝐹𝑢 (𝑡) − 𝐹𝑣 (𝑡) − LevMed(𝐹𝑢 − 𝐹𝑣) | 𝑑𝑡,

where the level median LevMed is defined by

LevMed( 𝑓 ) := min
{
arg min

𝛼∈R

∫ 1

0
| 𝑓 (𝑡) − 𝛼 | 𝑑𝑡

}
.

We used 𝑊1 (rather than 𝑊2) because it has a more direct interpretation and is less sensitive to small differences in
distribution tails.

The scores reported in Fig. 4 were first averaged over 𝜙 and 𝜓, and then over all residues in the test set, noting that the
N- and C-terminal residues lack defined values of 𝜙 and 𝜓, respectively.

B.3.5. Rotamer dihedral distance

The rotamer distance metric was calculated by comparing the distribution of side chain dihedral states between the
generated ensembles and the MD ensembles. Side chain conformations are quantified by discretizing each 𝜒 dihedral angle,
as calculated by MDTraj methods [66], into three canonical rotamer states: trans (≈ 180◦), gauche+ (≈ 60◦), and gauche–
(≈ −60◦). Each residue is represented by the joint state of its rotatable side-chain dihedrals (e.g., 𝜒1 = 𝑡, 𝜒2 = 𝑔+,
𝜒3 = 𝑔− for a residue with three 𝜒 angles). Residue-wise rotamer distributions for each model were then compared to the



30

corresponding MD distributions using the Jensen–Shannon divergence (JSD) and averaged across residues in the test set.
Residues with no 𝜒 angles (GLY, ALA) are ignored in this calculation. Reported scores are shown in Fig. 4.

To quantify the similarity between two probability distributions, we used the Jensen–Shannon divergence, a symmetric
and bounded measure derived from the Kullback–Leibler (KL) divergence. Given two discrete or continuous probability
distributions 𝑃(𝑥) and 𝑄(𝑥) defined over the same support, we first define their mixture distribution

𝑀 (𝑥) = 1
2
(
𝑃(𝑥) +𝑄(𝑥)

)
.

The Jensen–Shannon divergence is then given by

JSD(𝑃 ∥ 𝑄) = 1
2

KL(𝑃 ∥ 𝑀) + 1
2

KL(𝑄 ∥ 𝑀) ,

where the Kullback–Leibler divergence is defined as

KL(𝑃 ∥ 𝑄) =
∫

𝑃(𝑥) log 𝑃(𝑥)
𝑄(𝑥) 𝑑𝑥,

with the integral replaced by a sum in the discrete case.

The JSD is non-negative, symmetric, and bounded such that 0 ≤ JSD(𝑃 ∥ 𝑄) ≤ ln 2, where a value of zero indicates
identical distributions and ln 2 corresponds to maximally distinct distributions with no shared information.

B.4. Case study: Topos-1 captures the behavior of the Parkinson's disease target
𝛼-synuclein (extended analyses)

B.4.1. Additional secondary structure analyses

In addition to the 𝛼-helical propensities reported in Fig. 10, Figs. S6 and S7 show the calculated 𝛽-strand and random coil
propensities, respectively, for the ensembles generated with Topos-1, AlphaFold-2, and BioEmu. In both cases, Topos-1
again demonstrates excellent agreement with the ensemble obtained with MD simulation [33].
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Figure S6 | Topos-1 generates conformational ensembles of Parkinson’s disease target 𝛼-synuclein that
outperform state-of-the-art structure prediction models in experimental fidelity. (a) Mean absolute error in
𝛽-strand propensity relative to experiment, averaged across the 𝛼-synuclein sequence (𝑛 = 140 residues). (b)
Residue-resolved mean absolute error in 𝛽-strand propensity indicates largely similar regions of error across the
models, with a lower overall error obtained with MD and Topos-1. Experimental measurements indicate moderate
(~10%) 𝛽-strand propensity across the sequence [40].
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Figure S7 | Topos-1 generates conformational ensembles of Parkinson’s disease target 𝛼-synuclein that
outperform state-of-the-art structure prediction models in experimental fidelity. (a) Mean absolute error in
random coil propensity relative to experiment, averaged across the 𝛼-synuclein sequence (𝑛 = 140 residues). (b)
Residue-resolved mean absolute error in random coil propensity indicates largely similar regions of error across the
models, with a lower overall error obtained with MD and Topos-1. Experimental measurements indicate significant
random coil propensity across the sequence [40]. Experimental random coil propensities obtained by subtracting
𝛼-helix and 𝛽-strand propensities from unity, which is valid for 𝛼-synuclein.
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Figure S8 | Extended results for Fig. 12. The kernel density estimates and JSD to the reference MD [33] are
shown for each model based on CVs obtained from ELViM embeddings. The embeddings are calculated by
combining samples from each model. Consistent with the findings in Figs. 10, 11, and 12, Topos-1 has the strongest
agreement with data obtained from publicly available MD simulations for 𝛼-synuclein.

B.4.2. Extended ELViM analyses

The results in Fig. 12 were obtained based on samples from AlphaFold-2, Boltz-2x, and BioEmu. The results in Figs. 5
and S8 were obtained based on samples from all models. In all cases, embeddings were calculated using default parameters
and 200 samples from each model.

In this work, probability distributions were estimated using a kernel density estimation in the relevant collective variable
space, and the JSD (see Section B.3.5) was computed between model-generated and MD reference distributions to quantify
ensemble-level agreement. Gaussian kernel density estimations were performed using the SciPy [72] software package.
Scott’s rule [73] was used to estimate the kernel bandwidth.
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B.5. Case study: Topos-1 demonstrates sensitivity to sequence perturbations (extended
analyses)
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Figure S9 | Extended results for Fig. 13. We present the full 𝑅g distributions for low 𝜅, wild type, and high 𝜅 for
each of NTAIL and PNT4 as modeled by Topos-1.

B.5.1. Extended 𝑅g and 𝐷max distributions

In addition to the radius of gyration (𝑅g), the maximum particle dimension (𝐷max) is commonly reported from SAXS
experiments. However, 𝐷max is inferred from the long-distance tail of the pair-distance distribution function P(r) and
therefore comes with substantial uncertainty, particularly for flexible or disordered systems. Computationally, the proxies
for 𝐷max, usually the maximum or high-percentile interatomic distance within an ensemble, are also dominated by rare,
extended conformations and thus exhibit high variance and strong sensitivity to sampling noise.

As such, 𝑅g is reported as the primary measurement to compare to experimental SAXS results in the main text. However,
accurate prediction of 𝑅g does not guarantee accurate prediction of 𝐷max. Nevertheless, when examining the high-distance
tail of the ensembles, we observe consistency with experimental trends. Specifically, we report the distribution of interatomic
distances as a function of percentile and use the extreme high-percentile regime (99% and above) as a computational proxy
for 𝐷max. For both NTAIL and PNT4, we recover the experimental rank low-𝜅 ≳ WT > high-𝜅, with WT closely resembling
the low-𝜅 variant and the high-𝜅 variant exhibiting a markedly more compact ensemble.
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Figure S10 | Interatomic distance percentiles for NTAIL and PNT4 variants. Curves plot pooled heavy-atom
distance versus percentile for low-𝜅 (cyan), WT (blue), and high-𝜅 (dark green), with 99–100% insets and a dashed
line marking 99.5%, a possible percentile to make 𝐷max proxies, highlighting the tail distribution that corresponds to
the maximum particle dimension.

B.6. Case study: Topos-1 facilitates structure-based discovery of small molecules for the
prostate cancer target androgen receptor (extended results and assays)

B.6.1. Androgen receptor trans-activation assay (L2 set)

A trans-activation assay was used to measure androgen receptor (AR) activity and compute IC50 values for compounds of
interest. This assay used a Firefly Luciferase gene under the control of an Androgen Response Element, stably expressed in
a prostate cancer cell line (22Rv1). The cell line AR-Luc-22Rv1 was acquired from a commercial source (BPS Bioscience)
and maintained according to the manufacturer’s instructions. The cell culture media consisted of RPMI 1640, ATCC
modification (ThermoFisher Scientific) supplemented with 10% Fetal Bovine Serum (FBS) (Corning) and 1% Penicillin-
Streptomycin (Pen-Strep) (Corning). Cells were passaged by enzymatic dissociation (Accutase) (Corning) at approximately
90% confluence on standard tissue culture plastics.

In preparation for the trans-activation assay, cells were enzymatically dissociated as above and re-plated into assay media
(RPMI 1640, No Phenol Red) (ThermoFisher Scientific) supplemented with 10% Charcoal Stripped FBS (Corning) and
1% Pen-Strep. Re-plating was done onto white, clear-bottom 96-well plates (Greiner) at a density of 20,000 cells per
well. After 24 hours, media was exchanged with assay media treated with Dimethyl Sulfoxide (DMSO) (Sigma-Aldrich)
or 2 nM Dihydrotestosterone (DHT) (Sigma-Aldrich) and a dilution series of compounds of interest in DMSO. The final
concentration of DMSO in all wells was 0.2%. Each plate contained Positive Control (DMSO only) and Negative Control
(DMSO plus 2 nM DHT) wells. All compound-treated wells contained 2 nM DHT. Positive and negative control wells were
replicated six times per plate. Each compound dilution was replicated three times per plate.

Cells were incubated with compounds for 16 hours and then treated with luciferase detection reagent (ONE-Glo EX
Luciferase Assay System) (Promega) according to the manufacturer’s instructions. Plates were read on a GloMax (Promega)
plate reader in luminescence mode with a 1 second integration time. Data were expressed as percent inhibition, and IC50
values were calculated from a 4-parameter Hill equation as follows:

Percent Inhibition = Positive Control + Negative Control − Positive Control
1 + (IC50/[Compound])Hill Slope

,

where the maximum of the curve was constrained to 100% inhibition.
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B.6.2. Extended affinity prediction results (L1 and L2 sets)

Ligand set L1 was assembled primarily from the compound series reported by Basu et al. [48], which to our knowledge
constitutes the largest publicly available collection of small-molecule structure-activity relationship (SAR) data targeting
the AR Tau5 R2R3 segment with reported IC50 values. The compounds in this series are structurally closely related, posing
a challenge for conventional docking-based ranking due to their limited chemical diversity and compressed activity range.
To provide additional reference points, a small number of representative compounds (ET516, EPI-7386, EPI-7170 and
EPI-002) reported in other studies were included [45–47], although their IC50 values were measured under different assay
conditions. As a result, some deviations from the overall trend are expected and likely reflect inter-assay variability.

Despite these sources of experimental heterogeneity, Topos-1-AP scores exhibit statistically significant agreement with
experimental IC50 values, yielding a Pearson correlation coefficient of 0.611 and a Spearman rank correlation of 0.757.
These results indicate that the ranking predicted by Topos-1-AP is robust even in the presence of structurally similar ligands
and partially inconsistent experimental references.

Ligand set L2 consists of 27 proprietary compounds designed and evaluated in-house, with activities measured using a
consistent cell-based assay. Topos-1-AP scores remain in good agreement with experimental measurements, yielding a
Pearson correlation coefficient of 0.734 and a Spearman rank correlation of 0.593. These results suggest that the affinity
prediction model retains meaningful ranking and predictive power, supporting its potential utility for forward prediction and
prioritization in future compound design.
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Figure S11 | (a) Correlation between the Topos-1-AP score and experimental potency of literature-reported
compounds (set L1, 15 compounds). The experimental IC50 values of ET516, EPI-7386, EPI-7170 and EPI-002
were taken from several different reports [45–47]. All other experimental IC50 values were taken from Basu et al.
[48]. (b) Correlation between the Topos-1-AP score and experimental potency from an in-house cell-based
assay, including proprietary compounds (set L2, 27 compounds). Dots denote measured IC50. The dashed line is
the least‑squares fit. Pearson’s 𝑟 and Spearman’s 𝜌 describe the linear relationship and ranking with two-sided p
values. A larger Topos-1-AP score reflects more favorable binding.
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